IDECEFYN vol 13 May-August 2007, 61-63

Molecular Medicinal Chemistry

http://www.idecefyn.com.ar

ISSN 1666-888X

Synthesis of the carbonated skeleton of stephaoxocanidine

Andrea B. J. Bracca and Teodoro S. Kaufman*

Instituto de Química Orgánica de Síntesis (IQUIOS, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina. E-mail: tkaufman@fbioyf.unr.edu.ar

Introduction

Stephaoxocanes (Deng et al., 1993; Kashiwaba et al., 1996, 1997; Deng and Zhao, 1997; da-Cunha et al., 1998) are tetracyclic alkaloids with an isoquinoline nucleus, which are obtained from natural sources of Far East (China and Japan), and Brazil. Five members of this family (stephaoxocanidine, eletefine, excentricine, N-methylexcentricine and stephaoxocanine) (Fig. 1) were isolated during the last decade from specimens of Stephania cepharantha Hayata, Stephania excentrica H. S. Lo and Cissampelos glaberrima, all

belonging to Menispermaceae family of use in folk medicine in the countries of origin (Pío-Corrêa, 1984; Rutter, 1990; Duke and Vasquez, 1993; Schwontkowski, 1993; Beckstrom-Sternberg and Duke, 1994).

In our laboratory a series of analogues of stephaoxocanes have been synthesized (Kaufman, 2001; Bianchi and Kaufman, 2003; Bianchi *et al.*, 2003, 2004). Some of them showed a potent inhibitory activity of the enzyme acetylcholinesterase, one of the most important therapeutic targets for the treatment of Alzheimer's disease (Bianchi *et al.*, 2005).

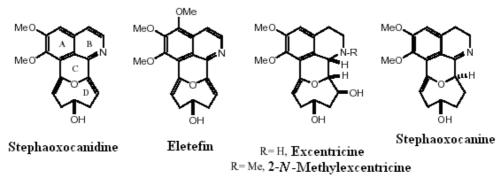


Figure 1

Owing to the low proportion of these alkaloids in natural sources, it is of great importance to carry out the synthesis of these compounds in order to perform studies on biological activity, and to allow eventual pharmacological developments. Therefore, the aim of this study was the chemical synthesis of the carbon skeleton of stephaoxocanidine as an approach to the preparation of stephaoxocane analogues.

Methodology

Chemical reactions were carried out under positive argon pressure, and monitored by thin layer chromatography. Spots were visualized under UV light (254 nm) and further sprayed with ethanolic *p*-anisaldehyde/sulfuric acid reagent and careful heating. The separation and purification of the reaction products were performed by column chromatography using solvent gradients for elution.

IR spectra were recorded on a FT-IR Shimadzu Prestige 21 model spectrophotometer, while ¹H- and ¹³C-NMR spectra were acquired in a Bruker AC200-E spectrometer operating at 200.13 and 50.33 MHz, respectively.

Results

The multiple-step synthesis of compound 1 was carried out, which sets the carbon skeleton of stephaoxocanidine, a structural analogue of this natural product. This is a tricyclic compound devoid of the typical oxygen bridge of stephaoxocanes. In the preliminary retrosynthetic analysis (Scheme 1), and taking into account marked disconnections, it was planned to obtain 1 from alcohol 2, just forming the nitrogen heterocyclic ring (Birch et al., 1972) as last synthetic step. It was thought that cyclodecenol 2 could be obtained

IDECEFYN

Molecular Medicinal Chemistry

vol 13 May-August 2007, 61-63

http://www.idecefyn.com.ar

ISSN 1666-888X

from the alcohol **3** (by a cyclization as olefin metathesis with ring closure) (Ronsheim and Zercher, 2003), which in turn was considered that would be accessible from aldehyde **4**.

Finally, it was envisaged that this aldehyde could be obtained by simple chemical transformations of commercial isovanillin (5).

$$\begin{array}{c}
MeO \\
A \\
B
\end{array}$$

$$\begin{array}{c}
MeO \\
MeO
\end{array}$$

$$\begin{array}{c}
MeO \\
HO
\end{array}$$

$$\begin{array}{c}
F
\end{array}$$

Scheme 1. Retrosynthetic analysis of the tricyclic target 1.

Therefore, isovanillin (5) was used as starting material for this synthesis (Scheme 2). It was subjected to a Williamson etherification using allyl bromide, K₂CO₃ and EtOH to generate compound 6 in 92% yield. The latter was subjected to a Claisen rearrangement in 1,2-dichlorobenzene under reflux to give compound 7 in 97% yield.

Subsequently, a Williamson etherification was carried out by treatment of phenol 7 with MeI, K_2CO_3 and EtOH to generate the intermediate 4 in a 90% yield. This aldehyde suffered addition of the Grignard reagent 8, providing a 60% of the benzylic alcohol 3.

When 3 was subjected to the reaction of olefin metathesis with ring closure using Grubbs catalyst of 1st generation, the cycled compound was obtained in a low yield (35%). Therefore, it was decided to acetylate the alcohol in order to avoid interactions, in which this group participates, thus being possible

causes of reaction yield decrease. In this way, the acetylated compound **9** was subjected to the reaction of olefin metathesis with ring closure, thus obtaining the cycled product **10** in a 77% yield. ¹H-NMR spectrum of **10** showed that this product accounts for the *Z* isomer. Then, **10** was quantitatively hydrogenated in the presence of PtO₂ and EtOH, and compound **11** was obtained, which was further hydrolyzed (NaOH, THF, MeOH) to give the benzylic alcohol **2** in a 91% yield.

This alcohol was subjected to a Mitsunobu reaction with *N*-tosylaminoacetal to give 68% of sulfonamidoacetal **12**, required precursor for Jackson cyclization.

This cyclization was performed in the presence of 6 N HCl and EtOH in dioxane in order to produce a 50% of the dihydroisoquinoline 13. Finally, 13 underwent an oxidative desulfonylation, the expected isoquinoline 1 being obtained in a 70% yield.

$$\begin{array}{c} \text{MeO} \\ \text{RO} \\ \text{CHO} \\ \text{RO} \\ \text{RO} \\ \text{CHO} \\ \text{CHO} \\ \text{RO} \\ \text{CHO} \\ \text{CHO} \\ \text{RO} \\ \text{CHO} \\ \text{CHO}$$

Scheme 2. Reagents and conditions: a) BrCH2CH=CH2, K2CO3, EtOH, reflux, 3 h (92%); b) 1,2- Cl2C6H4, reflux, 10 h (97%); c) MeI, K2CO3, EtOH, reflux, 8 h (90%); d) 8, THF, rt, 3 h (60%); e) Ac2O, C5H5N, DMAP (cat.), CH2Cl2, rt, 4 h (90%); f) Grubbs catalyst (1st generation), CH2Cl2, rt, 10 h (77%); g) H2 (1 atm), PtO2 (cat.), EtOH, rt, 5 h (100%); h) 2.75N NaOH, MeOH, THF, 0°C→50°C, 8 h (91%); i) TsNHCH2CH(OMe)2, PPh3, DIAD, THF, 60°C, 4 h (68%); j) 6N HCl, EtOH,dioxane, reflux, 20 min (50%); k) KtBuO, 2,6-C5H3N, reflux, 3 h (70%).

IDECEFYN

Molecular Medicinal Chemistry

vol 13 May-August 2007, 61-63

Conclusions

Isoquinoline derivative 1 was obtained as a structural analogue of stephaoxocanidine, which possesses the carbon skeleton of the natural product. The synthesis was achieved in 11 steps and with an overall yield of 7%.

Acknowledgements

The authors gratefully acknowledge Josefina Prats Foundation, CONICET, SECyT-UNR and ANPCyT (Argentina) for financial A.B.J.B. thanks ANPCvT support. CONICET (Argentina) for a research fellowship.

Note: This study was presented at the "XXVI Congreso Argentino de Química", San Luis, Argentina, 2006

References

- Beckstrom-Sternberg S. and Duke J. A. (1994) Ethnobotany Database. Agricultural Research Service, USDA.
- -Bianchi D. A. and Kaufman T. S. (2003) Synthesis of a tricyclic lactone embodying the ABC-ring system of stephaoxocanidine, by tin chloride-assisted sulfonamidoacetal cyclization and an aromatization promoted by triethylamine. ARKIVOC x, 178-188.
- Bianchi D. A., Cipulli M. A. and Kaufman T. S. (2003)Model **Studies** Towards Stephaoxocanes: Construction of the 2-Oxa-4aza-phenalene Core of Stephaoxocanidine and Eletefine. Eur. J. Org. Chem. 4731-4736.
- Bianchi D. A., Rúa F. and Kaufman T. S. (2004) Studies on the intramolecular oxa-Pictet-Spengler rearrangement of 5-aryl-1,3dioxolanes 4-hydroxy-isochromans. to *Tetrahedron Lett.* **45**, 411-415.
- Bianchi D. A., Schmeda Hirschmann G., Theoduloz C., Bracca A. B. J. and
- Kaufman T. S. (2005) Synthesis of tricyclic analogs of stephaoxocanidine and their evaluation as acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 15, 2711-2715.
- Birch A. J., Jackson A. H., Shannon P. V. R. and Varma P. S. P. (1972) An improved route to isoquinolines; synthesis of the alkaloids escholamine and takatonine. Tetrahedron Lett. **13**, 4789–4792.
- da Cunha E. V. L., Cornélio M. L., Barbosa Filho J. M., Braz Filho R. and Gray A. I. (1998) Eletefine, a stephaoxocane alkaloid from Cissampelos glaberrima. J. Nat. Prod. **61**. 1140-1142.
- Deng J.-Z., Zhao S.-X. and Miao Z.-C. (1993) An alkaloid with a novel skeleton from

ISSN 1666-888X http://www.idecefyn.com.ar the roots of Stephania excentrica. Nat. Prod.

- Lett. 2, 283-286.
- Deng J.-Z. and Zhao S.-X. (1997) 2-Nmethylexcentricine, a new alkaloid from roots of Stephania excentrica. J. Nat. Prod. 60, 294-
- Duke J. and Vasquez R. (1993) Amazonian Ethnobotanical Dictionary, CRC Press Inc., Boca Raton, FL, U.S.A.
- Kashiwaba N., Morooka S., Kimura M., Ono M., Toda J., Suzuki H. and Sano T. (1996) Stephaoxocanine, a novel dihydroisoguinoline alkaloid from Stephania cepharantha. J. Nat. Prod. 59, 803-805.
- Kashiwaba N., Morooka S., Kimura M., Ono M., Toda J., Suzuki H. and Sano
- (1997)T. Stephaoxocanidine, alkaloid isoquinoline from Stephania cepharantha. Nat. Prod. Rep. 9, 177-180.
- Kaufman T. S. (2001) Sulfonamidoacetal Cyclization-based Synthesis tetrahydrooxazaphenalenelactone Related the ABC-Ring System of the Stephaoxocanes. Heterocycles 55, 323-330.
- Pío-Corrêa M. (1984) Dicionário das Plantas Úteis do Brasil e das Exóticas Cultivadas, Vol. 2, ed. Ministério da Agricultura, Rio de Janeiro, Brazil, p. 282.
- Ronsheim M. D. and Zercher C. K. (2003) Ring expansions of beta-keto lactones with zinc carbenoids: syntheses of (+)-patulolide A and (+/-)-patulolide B. J. Org. Chem. 68, 1878-1885.
- Rutter R. A. (1990) Catálogo de Plantas Utiles de la Amazonia Peruana. ed.: Instituto Lingüístico de Verano, Yarinacocha, p. 349, Perú.
- Schwontkowski D. (1993) Herbs of the Amazon, Traditional and Common Uses. Science Student Brain Trust Publishing, Utah, U.S.A.