Molecular Medicinal Chemistry

http:/:www.idecefyn.com.ar

ISSN 1666-888X

Synthesis de alkoxy and aryloxyphthalonitriles key precursors for the synthesis of substituted phthalocyanines

María C. García Vior, Ana C. Monsalvo and Josefina Awruch

Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113 Buenos Aires, Argentina.

E-mail: jawruch@ffyb.uba.ar

Introduction

Owing to their properties, phthalocyanines have been the aim of intensive studies on their application in photodynamic therapy, thus design of new derivatives being of special interest (Mody and Pandey, 2001).

A factor to be taken into account when designing these colourants is the property of forming aggregates that decrease their photodynamic effect, since only monomers are good generators of singlet oxygen, which is the cytotoxic species responsible for tumor death (Henderson and Dougherty, 1992).

Phthalocyanines substituted with bulky groups on the periphery can produce a decrease in the formation of aggregates, and consequently, an improvement in the photodynamic effect of the photosensitizer (Fernández *et al.*, 1996).

A synthetic route that involves the nucleophilic aromatic substitution of 3-nitro phthalonitrile (1) and 4-nitrophthalonitrile (2) (Snow and Jarvis, 1984) with an adequate oxygenated nucleophile was explored to obtain intermediates, whose post-tetramerization will lead to zinc (II) phthalocyaninates.

Methodology

3-(2-Adamantoxy)phthalonitrile, 4-(2-adamantoxy) phthalonitrile, 4-(3-dimethylaminophenoxy)phthalonitrile and 3-(3-dimethylaminophenoxy) phthalonitrile were prepared.

These compounds were purified by medium pressure chromatography, recrystallized, and characterized by spectroscopic methods, ¹H-NMR, mass spectrometry and infrared spectroscopy.

Results

Adamantol (3) was reacted with phthalonitrile (1) and (2) in alkaline medium using DMSO as solvent in order to obtain 3-(2-adamantoxy) phthalonitrile and 4-(2-adamantoxy) phthalonitrile, respectively. Under similar conditions, when 1 or 2 were reacted with 3-dimethylaminophenol (4) compounds 4-(3-dimethylaminophenoxy)phthalonitrile and 3-(3-dimethylaminophenoxy)-phthalonitrile were obtained

Conclusions

The synthesized compounds were obtained in 30% yield, and excellent purity quality.

Molecular Medicinal Chemistry

vol 13 May-August 2007, 12-13

http:/:www.idecefyn.com.ar

ISSN 1666-888X

Acknowledgements

Thanks are due to financial support of the National Agency for Promoting Science and Technology (Agencia Nacional de Promoción Científica y Tecnológica, Argentina), UBACyT, and CONICET (Argentina), and the technical assistance of Mrs. Juana Alcira Valdez.

Note: This study was presented at the "XXVI Congreso Argentino de Química" , San Luis, Argentina, 2006

References

- Fernández D. A., Awruch J. and Dicelio L. E. (1996) Photophysical and aggregation studies of *t*-butyl substituted Zn phthalocyanines. *Photochem. Photobiol.* **63**, 784-792.
- Henderson B. W. and Dougherty T. J. (1992) *Photodynamic Therapy*. Marcel Dekker, Inc, New York.
- Mody T. D. and Pandey R. K. (2001) Medical applications of porphyrin-type macrocycles. *J. Porphyrins Phthalocyanines* **5**, 103-104.
- Snow A. W. and Jarvis N. L. (1984) Molecular association and monolayer formation of soluble phthalocyanine compounds. *J. Am. Chem. Soc.* **106**, 4706-4711.