Minthostachys verticillata essentials oil and its major components: antiherpetic selective action in HEp-2 cells.

María V. Vogt1; Sonia B. Sutil2; Franco M. Escobar2, María C. Sabini2, Laura N. Cariddi2, Cristina V. Torres2, Silvia M. Zanon2, Liliana I. Sabini2*

1Departamento de Biología Molecular. Universidad Nacional de Río Cuarto. Ruta 36, Km 601. Río Cuarto. Córdoba. ARGENTINA 2Departamento de Microbiología e Inmunología. Universidad Nacional de Río Cuarto. Ruta 36, Km 601. Río Cuarto. Córdoba. ARGENTINA.

ABSTRACT

The medicinal herb Minthostachys verticillata was studied in various fields of natural medicine. Numerous studies were made to evaluate its antimicrobial properties. This work emphasizes in the analysis of the antiviral capacity of its Essential Oil (EO). The aim of this study was to determine the Therapeutic Index (TI) of the EO and its main chemical components. Susid herpesvirus type 1 or Pseudorabies virus (Prv) was proliferated in HEp-2 cells in presence of non-toxic concentrations of the oily samples. Antiviral action was quantified by reducing the number of plaques of lysis. Previously, the cytotoxicity of the samples was evaluated and 50% Cytotoxic Concentration values (CC50) were determined. The TI was calculated by relating the cytotoxic concentrations of each sample vs. those concentrations active against the virus. The results showed that the major components of the EO were pulegone, menthone and limonene, with CC50 of 352, 835 and 1155 µg/mL respectively vs. the CC50 of EO: 613 µg/mL. The antiviral action was exerted by pulegone and the EO at concentrations 20 to 30 times lowers than the toxic concentrations. These IT values show the possible applicability of these compounds because they exert selective antiviral action.

Keywords: Minthostachys verticillata, essential oil, Herpes suis virus type 1, antiviral action, therapeutic index.

Corresponding author: Liliana Sabini. Email: lsabini@exa.unrc.edu.ar

Received: February 22, 2010. Accepted: March 10, 2010
Introduction
Considering that the 80% of the world's population depends on medicinal plants for its primary health care, the search for new substances of plant origin that may possess antiviral activity has been intensified in recent years (Núñez and Cantero, 2000).

From the wide and varied range of medicinal and aromatic plants with potential pharmacological activity that Córdoba province (Argentina) offer; the Minthostachys verticillata study is very important. It belongs to Lamiaceae family and is popularly known as peperina. It has antibacterial, antifungal and antiviral properties (De Feo et al., 1998; Zanon et al., 1999; Primo et al., 2001).

Because of viral agents are obligate intracellular parasites, it is very difficult to find compounds with selective activity against viruses without affecting the host cells. The Therapeutic Index (TI) is a parameter that relates the toxic capacity of the compound under study and their inhibitory activity of viral replication, allowing inferring its potential clinical application.

The aim of this study was to determine the antiviral action of M. verticillata Essential Oil (EO) and its main components on Suid herpesvirus type 1 replication cycle employing HEp-2 cell monolayers and also to determine the TI.

Experimental

1. Plant samples
Green leaves and thin stems of Minthostachys verticillata (Griseb.) Epling (Labiatae) were collected, during morning hours, from the city Santa Rosa in Córdoba province, Argentina, in April 2007. The plant was identified by Dr. Margarita Grosso, professor in the Area of Botany of the Universidad Nacional de Río Cuarto, and a voucher specimen was stored in the RCV (Río Cuarto Vasculares) herbarium as file #1955. The morphological characterization of the plant was executed macro-and microscopically to confirm the identity of these specimens. The aerial parts of the plant were made up of the leaves and parts of the stem. The oil was isolated from the aerial parts.

2. Essential oil isolation
To obtain the essential oil (EO), 60 g of ground plant material were hydro-distilled for 3 h using a Clevenger-type apparatus, yielding 4.8% of the oil. The oil was stored in the dark at -20 °C until use. Quantification of components present in the oil sample was made by gas chromatography. Previous studies by this method showed that pulegone, menthone and limonene were the main compounds. The ratio found was: 62.97%, 16.40% and 1.87% respectively (Cariddi et al., 2009). In order to perform the cytotoxic and antiviral in vitro assays, various concentrations of oily samples were obtained. First they were emulsified in Dimethylsulfoxide (DMSO) and then diluted in Maintenance Medium (MM) Eagle-Earle supplemented with 2% fetal bovine serum (FBS), glutamine and antibiotics.

3. Cytotoxicity assay
Cellular viability was measured with the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (Sigma-Aldrich) (MTT) method (Seth et al., 2004). Confluent cultures of HEp-2 cells grown with Eagle-Earle medium supplemented with 8% FBS, glutamine and antibiotics in 96-well plates were exposed during 48 h at 37°C to different concentrations of the oily samples. Were employed three wells for each dilution; untreated cells were used as control. The Optical Density (OD) was measured at 560 nm using a microplate ELISA reader (Labsystems Multiskan MS, Finland).

The Survival Fraction % (SF%) in the treated cultures was calculated from the DO, in relation to cultures controls, that represent the 100% viability:

\[
SF \% = \frac{D.O. \text{ treated cells}}{D.O. \text{ control cells}} \times 100
\]

4. Antiviral activity assays
To determine the 50% Effective Concentrations (EC50), confluent monolayers of HEp-2 cells developed in 24-well culture plates were infected with 200 µL of ten fold dilutions of Suid herpesvirus type 1, RC/79 strain. After 90 min incubation at 37°C the remaining viral suspension was discarded and 1 mL of Plate Medium (PM): MM + 0.75% of methyl cellulose, containing the compound under study at non-cytotoxic concentrations were added. The assays included the followings controls: Cellular Control, cultures with PM only; Viral Infectivity Control, infected cultures covered with PM only; and Cytotoxicity Control, cultures covered with PM.
containing the oily sample at the concentration tested (Garcia et al, 2000, Gong et al., 2004).

After 72 h incubation at 37 °C, viral titers were calculated by the method of Dulbecco R. (1962). The evaluation of the inhibitory action exerted by the oily samples was performed by the plaque reduction assay (Chattopadhyay et al., 2009). The degree of antiviral activity of each sample was determined by relating the viral titers obtained in treated cultures vs. viral titers obtained from controls of viral infectivity.

\[
\% \text{ Viral inhibition} = 100 - \frac{A}{B} \times 100
\]

Where:
A = Title viral expressed in PFU/mL obtained in treated cultures.
B = Title viral expressed in PFU/mL obtained in untreated cultures.

5. Statistical analysis

The experiments of cytotoxic and antiviral activity were performed in triplicate. The CC_{50} and EC_{50} values were calculated using a nonlinear regression model based on Boltzmann sigmoidal curve by the software GraphPadPrism 5.0.

6. Determination of the TI of M. verticillata EO and its main components

The TI for the different oily samples was calculated according describes (Li et al., 2002) using the following formula:

\[
\text{TI} = \frac{\text{CC}_{50}}{\text{EC}_{50}}
\]

Results and discussion

1. Analysis of the cytotoxic activity

Cytotoxicity values are summarized in Table 1. Pulegone was the most toxic compound due to the lower concentration (352 µg/mL) affected 50% HEP – 2 cells viability. The CC_{50} values obtained were of 613 µg/mL for the EO, 835 µg/mL for menthone and 1155 µg/mL for limonene, being the last one the less toxic. This order coincides with previously reported results (Sutil et al., 2006).

2. Antiviral activity assays

In this study the results indicated that only the EO of M. verticillata and pulegone inhibited the replication of Suid herpesvirus type 1 in more than 50%. Both samples exerted an inhibition over 90% at concentrations of 100 µg/mL. The EC_{50} of EO was 20.25 µg/mL and 20 µg/mL for pulegone. The other compounds showed a slight antiviral activity and limonene was the less active.

3. Determination of therapeutic index

The TI values for all samples were calculated. They were 30.3 for the EO and 17.6 for pulegone. Data revealed that only these samples could be used as therapeutic agents due to these selective actions.

Conclusions

The MTT technique was appropriate to determine the cytotoxicity values for the EO of M. verticillata and its main components. Menthone and limonene exerted little antiviral action and it was not selective. The EO of M. verticillata and pulegone showed similar EC_{50} values (≥20). The EO of M. verticillata and its main compound, pulegone, confirm selective antiviral action.

Data reveal the therapeutic potential and the ethnobotanical importance of the Minthostachys verticillata specie.

Table 1: M. verticillata EO and its main components, Therapeutic Index

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>MTT CC_{50} a µg/mL</th>
<th>EC_{50} b µg/mL</th>
<th>TI c</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO M. verticillata</td>
<td>613</td>
<td>20.25</td>
<td>30.3</td>
</tr>
<tr>
<td>Pulegone</td>
<td>352</td>
<td>20</td>
<td>17.6</td>
</tr>
<tr>
<td>Menthone</td>
<td>835</td>
<td>> 835</td>
<td><1</td>
</tr>
<tr>
<td>Limonene</td>
<td>1155</td>
<td>> 1155</td>
<td><1</td>
</tr>
</tbody>
</table>

CC_{50} a: Cytotoxic concentration 50%,
EC_{50} b: Effective concentration 50%,
TI c: Therapeutic Index,
EO d: Essential oil

Acknowledgments

The authors thank CONICET and the subsidy PICTOR 8 / 20325 BID 1728/OC-AR, MINCYT of Cordoba and the UNRC SECyT by the grant provided for the realization of these experiences.

Note: Part of this study was presented at the ‘II Reunión de Biotecnología aplicada a plantas medicinales y aromáticas’ (Second Biotechnology Meeting on Medicinal and Aromatic Plants), Córdoba, Argentina, 2009.

References

